SCHEME OF COURSE WORK

Course Details:

Course Title	Design of Thermal Equipment					
Course Code	19ME2255 I	L T P C :3003				
Program:	M.Tech.					
Specialization:	THERMAL ENGINEERING	THERMAL ENGINEERING				
Semester	П					
Prerequisites	s Thermodynamics, Heat Transfer					
Courses to whic	Courses to which it is a prerequisite :NO					

Course Outcomes (COs):

1	Classify and design heat exchangers.
2	Evaluate convective heat transfer in ducts, concentric annuli, circular pipes
3	Determine pressure drop and effect of fouling in heat exchangers
4	Design double pipe heat exchangers and compact heat exchangers by considering fin
	effects
5	Design shell and tube heat exchangers and condensers for application in refrigeration

and air-conditioning

Program Outcomes (POs)

At the end of the programme, the students in THERMAL ENGINEERING will be able to

PO CodeProgram Outcome (PO)PO 1exhibit in-depth knowledge in thermal engineering specializationPO 2think critically and analyze complex engineering problems to make creative advances in theory and practicePO 3solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environmentPO 4use research methodologies, techniques and tools, and will contribute to the development of technological knowledgePO 5apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitationsPO 6understand group dynamics, contribute to collaborative multidisciplinary scientific researchPO 7demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factorsPO 8communicate complex engineering problems with the engineering community and society, write and present technical reports effectivelyPO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the communityPO 11examine critically the outcomes of actions and make corrective measures		I the programme, the students in THERMAL ENGINEERING will be able to
PO 2think critically and analyze complex engineering problems to make creative advances in theory and practicePO 3solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environmentPO 4use research methodologies, techniques and tools, and will contribute to the development of technological knowledgePO 5apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitationsPO 6understand group dynamics, contribute to collaborative multidisciplinary scientific researchPO 7demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factorsPO 8communicate complex engineering problems with the engineering community and society, write and present technical reports effectivelyPO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO Code	Program Outcome (PO)
PO 3solve problem, think originally and arrive at feasible and optimal solutions with due consideration to public health and safety of environmentPO 4use research methodologies, techniques and tools, and will contribute to the development of technological knowledgePO 5apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitationsPO 6understand group dynamics, contribute to collaborative multidisciplinary scientific researchPO 7demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factorsPO 8communicate complex engineering problems with the engineering community and society, write and present technical reports effectivelyPO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO 1	exhibit in-depth knowledge in thermal engineering specialization
PO 4use research methodologies, techniques and tools, and will contribute to the development of technological knowledgePO 5apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitationsPO 6understand group dynamics, contribute to collaborative multidisciplinary scientific researchPO 7demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factorsPO 8communicate complex engineering problems with the engineering community and society, write and present technical reports effectivelyPO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO 2	think critically and analyze complex engineering problems to make creative advances in theory and practice
PO 5apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the limitationsPO 6understand group dynamics, contribute to collaborative multidisciplinary scientific researchPO 7demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factorsPO 8communicate complex engineering problems with the engineering community and society, write and present technical reports effectivelyPO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO 3	
 PO 6 understand group dynamics, contribute to collaborative multidisciplinary scientific research PO 7 demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors PO 8 communicate complex engineering problems with the engineering community and society, write and present technical reports effectively PO 9 engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously PO 10 exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community 	PO 4	use research methodologies, techniques and tools, and will contribute to the development of technological knowledge
 PO 7 demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors PO 8 communicate complex engineering problems with the engineering community and society, write and present technical reports effectively PO 9 engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously PO 10 exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community 	PO 5	
PO 8communicate complex engineering problems with the engineering community and society, write and present technical reports effectivelyPO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO 6	understand group dynamics, contribute to collaborative multidisciplinary scientific research
PO 9engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuouslyPO 10exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO 7	
PO 10 exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community	PO 8	
towards the community	PO 9	
PO 11 examine critically the outcomes of actions and make corrective measures	PO 10	
	PO 11	examine critically the outcomes of actions and make corrective measures

Course Outcome Versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М		М	S			М					
CO2	М	S		S		S	М					
CO3	М	S	S	Μ			М					
CO4		S	S	М			Μ					
CO5		S	S	S			М					

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment Methods:	Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam	
---------------------	--	--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	Teaching- learning strategy	Assessment Method & Schedule
1	Classification of heat exchangers: Tubular heat exchangers, plate heat exchangers, extended surface heat exchangers.	CO1	 Why are baffles used in shell and tube heat exchangers. what are the types of fins that are used in heat exchangers. 	Lecture	Mid-Test 1 (Week 9)
2	flow arrangements – applications Basic design methods of heat exchangers: Overall heat transfer coefficient	CO1	Determine the overall heat transfer coefficient U for liquid-to-liquid heat transfer through a 0.003-m thick steel plates(k= 50 W/mK) for the following het transfer coefficients and fouling factor on one side.	Lecture / Discussion Problem solving	Assignment (Week 4 - 6) Mid-Test 1 (Week 9)
3	multi pass and cross flow heat exchangers - log mean temperature difference method	CO1	Air flowing at a rate of 5 kg/s is to be heated in a shell-and- tube heat exchanger from 20 to 50^{0} C with hot water entering at 90^{0} C and exiting at 60^{0} C. The overall heat transfer coefficient is 400 W/m ² K. The length of the heat exchanger is 2m. Determine the surface area of the heat exchanger and the number of tubes required by using 1. 1 to 2 shell-and-tube type 2. 2 to 4 shell-and-tube type	Lecture / Discussion Problem solving	Assignment (Week 4 - 6) Mid-Test 1 (Week 9)
4	effectiveness-NTU	CO1		□ Lecture /	Assignment

5	method for heat exchanger analysis	CO1	An orrangement of	Discussio n Problem solving Lecture	(Week 4 - 6) Mid-Test 1 (Week 9)
5	heat exchanger design calculation– heat exchanger design methodology.		 An arrangement of refrigeration system to take multiloads is shown in fig. F-12 is used as refrigerant in the system .Find Kw and C.O.P of the system. Compound compression with inter cooling is effective method of operation Discuss. 	□ Lecture □ Problem solving	Assignment (Week 4 - 6) Mid-Test 1 (Week 9)
6	Correlations for forced convection heat transfer coefficients: Laminar forced convection in ducts and concentric annuli	CO2	In an absorption refrigeration system heating cooling refrigeration take place at the temperatures of 150° C, 30° C and -20° C. Find C.O.P of the system.	 Lecture Problem solving 	Mid-Test 1 (Week 9)
7	turbulent forced convection in circular pipes – heat transfer in helical coils and spirals – heat transfer in bends.	CO2	1. What is equilibrium concentration. Find out the expression for the same. 2. Dry and saturated steam at 2.8 bar is available for an ejector refrigeration unit. Estimate steam consumption in kg/hr/ton of refrigeration if condenser pressure is 0.07 bar, recirculated water temp = 20 °C, Chilled water temp = 10° C, Nozzle efficiency = 0.94, entrainment efficiency = 0.65, diffuser efficiency = 0.75, Quality of flashed vapour= 0.97	 Lecture Problem solving 	Mid-Test 1 (Week 9)
8	Heat exchanger pressure drop and pumping power: Tube side pressure drop in laminar and turbulent flows	CO3	City water will be cooled in a heat exchanger by sea water entering at $15^{\circ}C$. The outlet temperature of the sea water is $20^{\circ}C$. City water will be recirculated to reduce water consumption. The suction line of the pump	□ Lecture	Mid-Test 1 (Week 9)

	1				
			which has an inner diameter		
			of 154 mm is 22 m long and		
			has two 90° bends and a		
			hinged check valve. The		
			pipe from the pump to the		
			heat exchanger has an inner		
			diameter of 127 mm and is		
			140 m long. It also has six		
			90° bends. The 90° bends are		
			all made of steel with a		
			radius equal to the inner		
			diameter of the pipe, $\mathbf{R}/d = 1$.		
			The heat exchanger has 62		
			tubes in parallel and each		
			tube is 6 m long. The inner		
			diameter of the tube is 18		
			mm. All pipes are made of		
			1 11 1 1 /		
			0.0445 mm). The sea water		
			flow rate is $120 m^3/h$.		
			Assume that there is one		
			velocity head loss at the		
			inlet and 0.5 velocity head		
			loss at the outlet of the heat		
			exchanger. The elevation		
			difference is 10.5 m.		
			Calculate:		
			a) The total pressure drop in		
			the system		
			b)The power of the sea		
			water pump (pump		
			efficiency $h = 60\%$)		
9	Mid-Test 1	CO1,			
		CO2,			
		CO3			
10	pressure drop in	CO3	Consider a piping circuit of	Lecture	Seminar
	helical and spiral		a heat exchanger. In the	Discussion	(Week 10)
	coils – pressure drop		circuit there are four 90°		Mid-Test 2
	in bends and fittings.		standard elbows, three close		(Week 18)
	0		patterns return bends, 2		` '
			check valves (clear way		
			swing type) 2 angle valves		
			(with no obstruction in flat		
			type seat) and three gate		
			valves (conventional wedge		
			type). The valves are fully		
			open. The straight part of the		
			circuit pipe is 150 m, and		
			water at 50° C flows with a		
L	1				

r					
11	Fouling of heat exchangers: Basic considerations – effect of fouling and	CO4	velocity of 4 m/s. The pressure drop through the heat exchanger is 12 kPa. Nominal pipe size is 2 in. OD (ID = 0.052m). 1) Calculate the total pressure drop in the system. Calculate the mass flow rate and pumping power (kW) assuming the isentropic efficiency of the pump to be 0.8. In a double pipe heat exchanger, deposits of calcium carbonate with a thickness of 1.12 mm and	□ Lecture □ Discussion Problem solving	Mid-Test 2 (Week 18)
	heat transfer and pressure drop – aspects of fouling – design of heat exchangers subject to fouling.		magnesium phosphate with a thickness of 0.88 mm on the inside and outside of the inner tube, respectively have formed over time. Tubes (ID = 1.9 cm, OD = 2.3 cm) are made of carbon steel (k = 43 W/ mK) calculate the total fouling resistance based on the outside surface area of the heat exchanger.		
12	Double pipe heat exchangers: Pressure drop – hydraulic diameter – hairpin heat exchanger – parallel and series arrangements of hairpins – total pressure drop.	CO4	A counter flow double-pipe heat exchanger is used to cool the lubricating oil for a large industrial gas turbine engine. The flow rate of cooling water through the inner tube is 0.2 kg/s, while the flow rate of oil through the outer annulus is 0.4 kg/s. The oil and water enter at temperatures of 60 $^{\circ}$ C and 30 $^{\circ}$ C, respectively. The heat transfer coefficient in the annulus is calculated to be 15 W/m ² K. The inner tube diameter is 25 mm and the inside diameter of the outer annulus is 45 mm. The outlet temperature of the oil is 40 $^{\circ}$ C. Assume c _p = 4178	 Lecture Discussion 	Assignment (Week 14 - 16) (Mid-Test 2 (Week 18)

			J/kg. K for water and $c_p=2006 \text{ j/kg}$ K for oil. The tube wall resistance and curvature of wall are neglected. Calculate the length of the heat exchanger if fouling is neglected.		
13	Compact heat exchangers: Plate-fin heat exchangers – tube-fin heat exchangers	CO4	Air at 2 atm and 500 K with a velocity of $U = 20$ m/s flows across a compact heat exchanger matrix having the configuration of surface 11.32-0737-S-R. Calculate the heat transfer coefficient and the frictional pressure drop. The length of the matrix is 0.8 m.	 Lecture Discussion 	Seminar (Week 13) (Mid-Test 2 (Week 18)
14	pressure drop for finned-tube heat exchangers – pressure drop for plate-fin heat exchangers.	CO4	Air at 1 atm and 400 K with a velocity of $U = 10$ m/s flows across a compact heat exchanger matrix having the configuration of surface CF- 8.7-5/8J(A) and exists with a mean temperature of 300K. The core is 0.6m long. Calculate the total frictional pressure drop between the air inlet and outlet and the average heat transfer coefficient on the air side.	^D Lecture	Assignment (Week 14 - 16) (Mid-Test 2 (Week 18)
15&16	Shell and tube heat exchangers: Basic components, basic design procedure of a heat exchanger, shell- side heat transfer and pressure drop, Bell Delaware's method.	CO5	A heat exchanger has to be designed to heat raw water by the use of condensed water at 67° C and 0.2bar, which will flow in the shell side with a mass flow rate of 50,000kg/h. The heat will be transferred to 30,000kg/h of city water coming from supply at 17°C (C _p =4184 kJ/kgK). A single shell and a single tube pass is preferable. A fouling resistance of	Lecture Problem solving	Assignment (Week 14 - 16) (Mid-Test 2 (Week 18)

			0.000176m ² K/W is		
			suggested and the surface		
			over design should not be		
			over 35%. A maximum		
			coolant velocity of 1.5m/s is		
			-		
			suggested to prevent		
			erosion. A maximum tube		
			length of 5m is required		
			because of space limitations.		
			The tube material is carbon		
			steel (k=60W/mK). Raw		
			water will flow inside of ³ / ₄		
			inch straight tubes (19 mm		
			OD with 16 mm ID). Tubes		
			are laid out on a square pitch		
			with a pitch ratio of 1.25.		
			The baffle spacing is		
			approximated by 0.6 of shell		
			diameter and the baffle cut		
			is set to 25%. The		
			permissible maximum		
			pressure drop on the shell		
			side is 0.5psi. The water		
			outlet temperature should		
			not be less than 40°C.		
			Perform the preliminary		
			analysis.		
17	Homigrontol shall as 1	CO5	What are the classifications	Lecture	Assignment
17	Horizontal-shell-and- tube condensers,	CO5		^a Lecture Problem	Assignment (Week 14 -
	horizontal in-tube		of evaporators for	solving	(week 14 - 16)
	condensers, plate		refrigeration and air-	SOLAINE	(Mid-Test 2
	condensers, place		conditioning? Explain with		(Week 18)
	cooled condensers,		neat diagrams.		(
	thermal design of				
	shell-and-tube				
	condensers, design				
	and operational				
	considerations.				
18	Mid-Test 2	C03,CO4,CO5			
19/20	END EXAM				